LaTeX mathematic cheat sheet

Practically, LaTeX is the standard typesetting system for scientific writing. Most of the well-written equations that appeared in books and around the web are written using LaTeX. 

Accents/diacritics

\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}

{\acute {a}}{\grave {a}}{\hat {a}}{\tilde {a}}{\breve {a}}\,

\check{a} \bar{a} \ddot{a} \dot{a}

{\check {a}}{\bar {a}}{\ddot {a}}{\dot {a}}

Standard functions

\sin a \cos b \tan c

\sin a\cos b\tan c

\sec d \csc e \cot f

\sec d\csc e\cot f\,

\arcsin h \arccos i \arctan j

\arcsin h\arccos i\arctan j\,

\sinh k \cosh l \tanh m \coth n

\sinh k\cosh l\tanh m\coth n

\operatorname{sh}o\, \operatorname{ch}p\, \operatorname{th}q

\operatorname {sh} o\,\operatorname {ch} p\,\operatorname {th} q

\operatorname{arsinh}r\, \operatorname{arcosh}s\, \operatorname{artanh}t

\operatorname {arsinh} r\,\operatorname {arcosh} s\,\operatorname {artanh} t

\lim u \limsup v \liminf w \min x \max y

\lim u\limsup v\liminf w\min x\max y

\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g

\inf z\sup a\exp b\ln c\lg d\log e\log _{10}f\ker g

\deg h \gcd i \Pr j \det k \hom l \arg m \dim n

\deg h\gcd i\Pr j\det k\hom l\arg m\dim n


Modular arithmetic

s_k \equiv 0 \pmod{m}

s_{k}\equiv 0{\pmod {m}}\,

a\, \bmod\, b

a\,{\bmod {\,}}b\,

Derivatives

\nabla\, \partial x\, dx\, \dot x\, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}, {\partial x_1\,\partial x_2}

\nabla \,\partial x\,dx\,{\dot {x}}\,{\ddot {y}}\,dy/dx\,{\frac {dy}{dx}}\,{\frac {\partial ^{2}y}{\partial x_{1}\,\partial x_{2}}}

Sets

\forall \exists \empty \emptyset \varnothing

\forall \exists \emptyset \emptyset \varnothing \,

\in \ni \not\in \notin \not\ni \subset \subseteq \supset \supseteq

{\displaystyle \in \ni \not \in \notin \not \ni \subset \subseteq \supset \supseteq \,}

\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus

\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus \,

\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup

\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup \,

Operators

+ \oplus \bigoplus \pm \mp -

+\oplus \bigoplus \pm \mp -\,

\times \otimes \bigotimes \cdot \circ \bullet \bigodot

\times \otimes \bigotimes \cdot \circ \bullet \bigodot \,

\star */ \div \frac{1}{2}

\star */\div {\frac {1}{2}}\,

Logic

\land (or \and) \wedge \bigwedge \bar{q} \to p

\land \wedge \bigwedge {\bar {q}}\to p\,

\lor \vee \bigvee \lnot \neg q \And

\lor \vee \bigvee \lnot \neg q\And \,

Root

\sqrt{2} \sqrt[n]{x}

{\sqrt {2}}{\sqrt[{n}]{x}}\,

Relations

\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}

\sim \approx \simeq \cong {\dot {=}}{\overset {\underset {\mathrm {def} }{}}{=}}\,

< \le \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto

<\leq \ll \gg \geq >\equiv \not \equiv \neq {\mbox{or}}\neq \propto \,

\lessapprox \lesssim \eqslantless \leqslant \leqq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox

\lessapprox \lesssim \eqslantless \leqslant \leqq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox

Geometric

\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ

\Diamond \,\Box \,\triangle \,\angle \perp \,\mid \;\nmid \,\|45^{\circ }\,

Arrows

\leftarrow (or \gets) \rightarrow (or \to) \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow

\leftarrow \rightarrow \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow \,

\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow

(or \impliedby) \Longrightarrow (or \implies) \Longleftrightarrow (or \iff)

\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow

\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow

\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow

\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons

\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \,

\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow

\rightarrowtail \looparrowright

\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright \,

\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow

\leftarrowtail \looparrowleft

\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,

\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow

\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \,

Special

\And \eth \S \P \% \dagger \ddagger \ldots \cdots \colon

{\displaystyle \And \eth \S \P \%\dagger \ddagger \ldots \cdots \colon \,}

\smile \frown \wr \triangleleft \triangleright \infty \bot \top

\smile \frown \wr \triangleleft \triangleright \infty \bot \top \,

\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar

\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar \,

\ell \mho \Finv \Re \Im \wp \complement

\ell \mho \Finv \Re \Im \wp \complement \,

\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp

\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp \,

USubscripts, superscripts, integrals

Feature Syntax How it looks rendered
Superscript

a^2

a^{2}
Subscript

a_2

a_{2}
Grouping

a^{2+2}

a^{2+2}

a_{i,j}

a_{i,j}
Combining sub & super without and with horizontal separation

x_2^3

x_{2}^{3}

{x_2}^3

{x_{2}}^{3}
Super super

10^{10^{8}}

10^{10^{8}}
Preceding and/or Additional sub & super

_nP_k

_{n}P_{k}

\sideset{_1^2}{_3^4}\prod_a^b

\sideset {_{1}^{2}}{_{3}^{4}}\prod _{a}^{b}

{}_1^2\!\Omega_3^4

{}_{1}^{2}\!\Omega _{3}^{4}
Stacking

\overset{\alpha}{\omega}

{\overset {\alpha }{\omega }}

\underset{\alpha}{\omega}

{\underset {\alpha }{\omega }}

\overset{\alpha}{\underset{\gamma}{\omega}}

{\overset {\alpha }{\underset {\gamma }{\omega }}}

\stackrel{\alpha}{\omega}

{\stackrel {\alpha }{\omega }}
Derivatives

x', y'', f', f''

x',y'',f',f''

x^\prime, y^{\prime\prime}

x^{\prime },y^{\prime \prime }
Derivative dots

\dot{x}, \ddot{x}

{\dot {x}},{\ddot {x}}
Underlines, overlines, vectors

\hat a\ \bar b\ \vec c

{\hat {a}}\ {\bar {b}}\ {\vec {c}}

\overrightarrow{a b}\ \overleftarrow{c d}\ \widehat{d e f}

{\overrightarrow {ab}}\ {\overleftarrow {cd}}\ {\widehat {def}}

\overline{g h i}\ \underline{j k l}

{\overline {ghi}}\ {\underline {jkl}}

\not 1\ \cancel{123}

\not 1\ {\cancel {123}}
Arrows

A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C

A{\xleftarrow {n+\mu -1}}B{\xrightarrow[{T}]{n\pm i-1}}C
Overbraces

\overbrace{ 1+2+\cdots+100 }^{\text{sum}\,=\,5050}

\overbrace {1+2+\cdots +100} ^{{\text{sum}}\,=\,5050}
Underbraces

\underbrace{ a+b+\cdots+z }_{26\text{ terms}}

\underbrace {a+b+\cdots +z} _{26{\text{ terms}}}
Sum

\sum_{k=1}^N k^2

\sum _{k=1}^{N}k^{2}
Sum (force \textstyle)

\textstyle \sum_{k=1}^N k^2

\textstyle \sum _{k=1}^{N}k^{2}
Product

\prod_{i=1}^N x_i

\prod _{i=1}^{N}x_{i}
Product (force \textstyle)

\textstyle \prod_{i=1}^N x_i

\textstyle \prod _{i=1}^{N}x_{i}
Coproduct

\coprod_{i=1}^N x_i

\coprod _{i=1}^{N}x_{i}
Coproduct (force \textstyle)

\textstyle \coprod_{i=1}^N x_i

\textstyle \coprod _{i=1}^{N}x_{i}
Limit

\lim_{n \to \infty}x_n

\lim _{n\to \infty }x_{n}
Limit (force \textstyle)

\textstyle \lim_{n \to \infty}x_n

\textstyle \lim _{n\to \infty }x_{n}
Integral

\int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx

\int \limits _{1}^{3}{\frac {e^{3}/x}{x^{2}}}\,dx
Integral (alternate limits style)

\int_{1}^{3}\frac{e^3/x}{x^2}\, dx

\int _{1}^{3}{\frac {e^{3}/x}{x^{2}}}\,dx
Integral (force \textstyle)

\textstyle \int\limits_{-N}^{N} e^x\, dx

\textstyle \int \limits _{-N}^{N}e^{x}\,dx
Integral (force \textstyle, alternate limits style)

\textstyle \int_{-N}^{N} e^x\, dx

\textstyle \int _{-N}^{N}e^{x}\,dx
Double integral

\iint\limits_D \, dx\,dy

\iint \limits _{D}\,dx\,dy
Triple integral

\iiint\limits_E \, dx\,dy\,dz

\iiint \limits _{E}\,dx\,dy\,dz
Quadruple integral

\iiiint\limits_F \, dx\,dy\,dz\,dt

\iiiint \limits _{F}\,dx\,dy\,dz\,dt
Line or path integral

\int_C x^3\, dx + 4y^2\, dy

\int _{C}x^{3}\,dx+4y^{2}\,dy
Closed line or path integral

\oint_C x^3\, dx + 4y^2\, dy

\oint _{C}x^{3}\,dx+4y^{2}\,dy
Intersections

\bigcap_1^n p

\bigcap _{1}^{n}p
Unions

\bigcup_1^k p

\bigcup _{1}^{k}p

Fractions, matrices, multi-lines

Feature Syntax How it looks rendered
Fractions

\frac{1}{2}=0.5

{\frac {1}{2}}=0.5
Small ("text style") fractions

\tfrac{1}{2} = 0.5

{\tfrac {1}{2}}=0.5
Large ("display style") fractions

\dfrac{k}{k-1} = 0.5

{\dfrac {k}{k-1}}=0.5
Mixture of large and small fractions

\dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} } = s_n

{\dfrac {{\tfrac {1}{2}}[1-({\tfrac {1}{2}})^{n}]}{1-{\tfrac {1}{2}}}}=s_{n}
Continued fractions (note the difference in formatting)

\cfrac{2}{ c + \cfrac{2}{ d + \cfrac{1}{2} } } = a \qquad \dfrac{2}{ c + \dfrac{2}{ d + \dfrac{1}{2} } } = a

{\cfrac {2}{c+{\cfrac {2}{d+{\cfrac {1}{2}}}}}}=a\qquad {\dfrac {2}{c+{\dfrac {2}{d+{\dfrac {1}{2}}}}}}=a
Binomial coefficients

\binom{n}{k}

{\binom {n}{k}}
Small ("text style") binomial coefficients

\tbinom{n}{k}

{\tbinom {n}{k}}
Large ("display style") binomial coefficients

\dbinom{n}{k}

{\dbinom {n}{k}}
Matrices

\begin{matrix} x & y \\ z & v \end{matrix}

{\begin{matrix}x&y\\z&v\end{matrix}}

\begin{vmatrix} x & y \\ z & v \end{vmatrix}

{\begin{vmatrix}x&y\\z&v\end{vmatrix}}

\begin{Vmatrix} x & y \\ z & v \end{Vmatrix}

{\begin{Vmatrix}x&y\\z&v\end{Vmatrix}}

\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}

{\begin{bmatrix}0&\cdots &0\\\vdots &\ddots &\vdots \\0&\cdots &0\end{bmatrix}}

\begin{Bmatrix} x & y \\ z & v \end{Bmatrix}

{\begin{Bmatrix}x&y\\z&v\end{Bmatrix}}

\begin{pmatrix} x & y \\ z & v \end{pmatrix}

{\begin{pmatrix}x&y\\z&v\end{pmatrix}}

\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr)

{\bigl (}{\begin{smallmatrix}a&b\\c&d\end{smallmatrix}}{\bigr )}
Arrays

\begin{array}{|c|c||c|} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0 \end{array}

{\displaystyle {\begin{array}{|c|c||c|}a&b&S\\\hline 0&0&1\\0&1&1\\1&0&1\\1&1&0\end{array}}}
Cases

f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases}

f(n)={\begin{cases}n/2,&{\mbox{if }}n{\mbox{ is even}}\\3n+1,&{\mbox{if }}n{\mbox{ is odd}}\end{cases}}
System of equations

\begin{cases} 3x + 5y + z &= 1 \\ 7x - 2y + 4z &= 2 \\ -6x + 3y + 2z &= 3 \end{cases}

{\begin{cases}3x+5y+z&=1\\7x-2y+4z&=2\\-6x+3y+2z&=3\end{cases}}
Breaking up a long expression so it wraps when necessary

<math>f(x) = \sum_{n=0}^\infty a_n x^n</math> <math>= a_0 + a_1x + a_2x^2 + \cdots</math>

f(x)=\sum _{n=0}^{\infty }a_{n}x^{n}=a_{0}+a_{1}x+a_{2}x^{2}+\cdots
Multiline equations

\begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \end{align}

{\displaystyle {\begin{aligned}f(x)&=(a+b)^{2}\\&=a^{2}+2ab+b^{2}\end{aligned}}}

\begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \end{alignat}

{\displaystyle {\begin{alignedat}{2}f(x)&=(a-b)^{2}\\&=a^{2}-2ab+b^{2}\end{alignedat}}}
Multiline equations with alignment specified (left, center, right)

\begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array}

{\begin{array}{lcl}z&=&a\\f(x,y,z)&=&x+y+z\end{array}}

\begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array}

{\begin{array}{lcr}z&=&a\\f(x,y,z)&=&x+y+z\end{array}}

Parenthesizing big expressions, brackets, bars

Feature Syntax How it looks rendered
Bad

( \frac{1}{2} )

({\frac {1}{2}})
Good

\left ( \frac{1}{2} \right )

\left({\frac {1}{2}}\right)

You can use various delimiters with \left and \right:

Feature Syntax How it looks rendered
Parentheses

\left ( \frac{a}{b} \right )

\left({\frac {a}{b}}\right)
Brackets

\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack

\left[{\frac {a}{b}}\right]\quad \left\lbrack {\frac {a}{b}}\right\rbrack
Braces (note the backslash before the braces in the code)

\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace

\left\{{\frac {a}{b}}\right\}\quad \left\lbrace {\frac {a}{b}}\right\rbrace
Angle brackets

\left \langle \frac{a}{b} \right \rangle

\left\langle {\frac {a}{b}}\right\rangle
Bars and double bars (note: "bars" provide the absolute value function)

\left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|

\left|{\frac {a}{b}}\right\vert \left\Vert {\frac {c}{d}}\right\|
Floor and ceiling functions:

\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil

\left\lfloor {\frac {a}{b}}\right\rfloor \left\lceil {\frac {c}{d}}\right\rceil
Slashes and backslashes

\left / \frac{a}{b} \right \backslash

\left/{\frac {a}{b}}\right\backslash
Up, down and up-down arrows

\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow

\left\uparrow {\frac {a}{b}}\right\downarrow \quad \left\Uparrow {\frac {a}{b}}\right\Downarrow \quad \left\updownarrow {\frac {a}{b}}\right\Updownarrow
Delimiters can be mixed, as long as \left and \right are both used

\left [ 0,1 \right ) \left \langle \psi \right |

\left[0,1\right)
\left\langle \psi \right|
Use \left. or \right. if you don't want a delimiter to appear:

\left . \frac{A}{B} \right \} \to X

\left.{\frac {A}{B}}\right\}\to X
Size of the delimiters

\big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]

{\big (}{\Big (}{\bigg (}{\Bigg (}\dots {\Bigg ]}{\bigg ]}{\Big ]}{\big ]}

\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle

\Big\rangle \big\rangle

{\big \{}{\Big \{}{\bigg \{}{\Bigg \{}\dots {\Bigg \rangle }{\bigg \rangle }{\Big \rangle }{\big \rangle }

\big| \Big| \bigg| \Bigg| \dots \Bigg\| \bigg\| \Big\| \big\|

{\big |}{\Big |}{\bigg |}{\Bigg |}\dots {\Bigg \|}{\bigg \|}{\Big \|}{\big \|}

\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil

\bigg\rceil \Big\rceil \big\rceil

{\big \lfloor }{\Big \lfloor }{\bigg \lfloor }{\Bigg \lfloor }\dots {\Bigg \rceil }{\bigg \rceil }{\Big \rceil }{\big \rceil }

\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow

\bigg\Downarrow \Big\Downarrow \big\Downarrow

{\big \uparrow }{\Big \uparrow }{\bigg \uparrow }{\Bigg \uparrow }\dots {\Bigg \Downarrow }{\bigg \Downarrow }{\Big \Downarrow }{\big \Downarrow }

\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots

\Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow

{\big \updownarrow }{\Big \updownarrow }{\bigg \updownarrow }{\Bigg \updownarrow }\dots {\Bigg \Updownarrow }{\bigg \Updownarrow }{\Big \Updownarrow }{\big \Updownarrow }

\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash

{\big /}{\Big /}{\bigg /}{\Bigg /}\dots {\Bigg \backslash }{\bigg \backslash }{\Big \backslash }{\big \backslash }

Alphabets

Greek alphabet
Boldface (greek)

\Alpha \Beta \Gamma \Delta \Epsilon \Zeta

\mathrm {A} \mathrm {B} \Gamma \Delta \mathrm {E} \mathrm {Z} \,

\Eta \Theta \Iota \Kappa \Lambda \Mu

\mathrm {H} \Theta \mathrm {I} \mathrm {K} \Lambda \mathrm {M} \,

\Nu \Xi \Omicron \Pi \Rho \Sigma \Tau

\mathrm {N} \Xi \mathrm {O} \Pi \mathrm {P} \Sigma \mathrm {T} \,

\Upsilon \Phi \Chi \Psi \Omega

\Upsilon \Phi \mathrm {X} \Psi \Omega \,

\alpha \beta \gamma \delta \epsilon \zeta

\alpha \beta \gamma \delta \epsilon \zeta \,

\eta \theta \iota \kappa \lambda \mu

\eta \theta \iota \kappa \lambda \mu \,

\nu \xi \omicron \pi \rho \sigma \tau

{\displaystyle \nu \xi \mathrm {o} \pi \rho \sigma \tau \,}

\upsilon \phi \chi \psi \omega

\upsilon \phi \chi \psi \omega \,

\varepsilon \digamma \vartheta \varkappa

\varepsilon \digamma \vartheta \varkappa \,

\varpi \varrho \varsigma \varphi

\varpi \varrho \varsigma \varphi \,

\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta}

{\boldsymbol {\mathrm {A} }}{\boldsymbol {\mathrm {B} }}{\boldsymbol {\Gamma }}{\boldsymbol {\Delta }}{\boldsymbol {\mathrm {E} }}{\boldsymbol {\mathrm {Z} }}\,

\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda}

\boldsymbol{\Mu}

{\boldsymbol {\mathrm {H} }}{\boldsymbol {\Theta }}{\boldsymbol {\mathrm {I} }}{\boldsymbol {\mathrm {K} }}{\boldsymbol {\Lambda }}{\boldsymbol {\mathrm {M} }}\,

\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma}

\boldsymbol{\Tau}

{\boldsymbol {\mathrm {N} }}{\boldsymbol {\Xi }}{\boldsymbol {\Pi }}{\boldsymbol {\mathrm {P} }}{\boldsymbol {\Sigma }}{\boldsymbol {\mathrm {T} }}\,

\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}

{\boldsymbol {\Upsilon }}{\boldsymbol {\Phi }}{\boldsymbol {\mathrm {X} }}{\boldsymbol {\Psi }}{\boldsymbol {\Omega }}\,

\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon}

\boldsymbol{\zeta}

{\boldsymbol {\alpha }}{\boldsymbol {\beta }}{\boldsymbol {\gamma }}{\boldsymbol {\delta }}{\boldsymbol {\epsilon }}{\boldsymbol {\zeta }}\,

\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda}

\boldsymbol{\mu}

{\boldsymbol {\eta }}{\boldsymbol {\theta }}{\boldsymbol {\iota }}{\boldsymbol {\kappa }}{\boldsymbol {\lambda }}{\boldsymbol {\mu }}\,

\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma}

\boldsymbol{\tau}

{\boldsymbol {\nu }}{\boldsymbol {\xi }}{\boldsymbol {\pi }}{\boldsymbol {\rho }}{\boldsymbol {\sigma }}{\boldsymbol {\tau }}\,

\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}

{\boldsymbol {\upsilon }}{\boldsymbol {\phi }}{\boldsymbol {\chi }}{\boldsymbol {\psi }}{\boldsymbol {\omega }}\,

\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa}

{\boldsymbol {\varepsilon }}{\boldsymbol {\digamma }}{\boldsymbol {\vartheta }}{\boldsymbol {\varkappa }}\,

\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}

{\boldsymbol {\varpi }}{\boldsymbol {\varrho }}{\boldsymbol {\varsigma }}{\boldsymbol {\varphi }}\,

References:


Add comment

reload, if the code cannot be seen